from knowledge generation to science-based innovation

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

OPEN CTM

Memristors for Neuromorphic Computing

Vítor Grade Tavares / Asal Kiazadeh (i3N — CENIMAT)

CENIMAT

May 4th, 2021

FIVE

YEARS

2020

Current Status

- Edge:
 - Interface with real world
- Computing at the edge improves:
 - Privacy
 - Latency
- •Artificial intelligence (AI) on the Edge — Edge AI
 - Inference
 - Machine Learning

HIRT

FIVE

YEARS

2020

Al of today and tomorrow

Modern age Al

- Al algorithms
- Big data
- Communication networks
- Powerful computing hardware (CMOS on the frontline)

Next generation AI

- Self-Learning
- One step learning
- Cognition
- New hardware paradigms

Classical Central Processing

On the way for the next AI generation

Near Memory Computating

1985 THIRTY FIVE YEARS 2020 5

On the way for the next AI generation

Neuromorphic computing

- Brain Inspired
- Event-based processing
- SNNs

1985 THIRTY FIVE YEARS 2020 6

Synaptic Learning — Spike Time Dependent Plasticity (STDP)

- Neurons fire pulses
- Weights (synapses) are updated based on time difference between post- and pre-synaptic pulses
- These properties have been demonstrated with memristor like devices

IIRT

FIVE

YEARS

2020

NeurOxide

New computer paradigms to overcome Von Neumann's bottleneck

\rightarrow Memristors learn and forget like biological synapses

Aims to achieve a fully integrated system with memristors and supporting electronics with the same materials — amorphous oxide semiconductors (AOS) —

- Same processing steps for transistors and resistive switching devices
- Less interface issues
- Low-temperature fabrication process
- Low cost

HIRTY

FIVE

YEARS

2020

8

NeurOxide

NeurOxide — synaptic learning — IGZO thin-film memristors

Post-synaptic

Resistive switching emulates synaptic learning (weighting)

- Potentiation decreases resistance / increases conductance (Δt >0 \mapsto Positive pulse)
- Depression increases resistance / decreases conductance ($\Delta t < 0 \mapsto Negative pulse$)

1985

FIVE

HIRT

FIVE

YEARS

2020

10

NeurOxide — Memristor Modelling — Black Box

$$I_M(t) = G_M(w,V) imes V(t)$$

$$rac{\partial w}{\partial t} = f(w,V) imes g(w,V)$$

$$G_M(w,V)$$
 Conductance

$$egin{aligned} g(w,V) & extsf{Window Function} \ f(w,V) & extsf{Threshold Function} \end{aligned}$$

Multistep Neural Networks (MSNN)

- ANN that captures the underlined ODE of the system by learning from the numerical multistep integration algorithms -

Layers

HIRT

FIVE

YEARS

2020

11

PhD. Students: Maria Pereira & Guilherme Carvalho

NeurOxide — in-memory computation logic

vcond vset

Imply or Material Implication Logic

VCOND **VSET** Ρ R_G

vclear

nfet

W=40u

L=20u

in -

nfet

nfet

inA –

W=20u

L = 20u

inB-set^{n<u>fe</u>}

cond

clear

20set addrli

cond addr i

clear addr i

out

nfet W=20u L = 20u

M2

nfet

W=80u L=20u **M**1

gind_sig

--set_out i

gnoosig addri

cond_out i

clear out i

gnd out i

W=20

W=80 =20

inA

inB

Control circuit

-out

MSc. Student: Luís Outeiro

12

2020

1985

FIVE

EARS

Conclusion

Next Generation AI

- Self-Learning
- One step learning
- Cognition

New possible Hardware Paradigms

- In-memory computating
- Event based computation (SNNs)

1985

HIRT

FIVE

YEARS

2020

INESC TEC Rua Dr. Roberto Frias 4200-465 Porto Portugal T +351 222 094 000 info@inesctec.pt www.inesctec.pt

f in y 🖸 🥑